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Abstract

Social scientists are often interested in the long run relationship between two variables where
the dependent variable has dynamic properties. Though methods for calculating the long
run multiplier for an independent variable are well-developed, calculating confidence lev-
els and assessing statistical significance is often difficult, especially when panel lengths are
relatively short. We build on insights from Webb, Linn, and Lebo (2019), who introduce a
bounds approach for evaluating these relations without making assumptions about the series
exhibiting stationary or unit root processes. We propose a Bayesian framework that uses a
bounded prior on the lagged dependent variable to constrain estimates for the dynamic re-
lationship to the plausible range of values arising from either stationary or integrated series,
and then taking draws of the posterior distribution to summarize the credible region. Doing
so allows for recovering estimates of the long run multiplier and its uncertainty, even for
short time series. After highlighting the advantages of adopting this framework via Monte
Carlo experiments, we replicate several existing studies to show how our method clarifies
long run relationships that were found inconclusive using existing techniques.
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Applied time series researchers often face difficult choices. It can be difficult to determine

the best, let alone correct, specification. In most cases, the first step in this process is to

test the stationarity of our series and make our modeling choices based on these diagnostics.

Philips (2018), for instance, provides a remarkably useful flowchart of choices that one should

make based on the results of a set of diagnostics. The difficulty is that many of the tests

are low powered and our series frequently have a small number of observations. Too often,

different tests will provide inconclusive or contradictory results. The applied researcher,

then, has to do what he or she thinks is best and hope that readers and reviewers agree.

For a short period, a misreading of De Boef and Keele (2008) led some scholars to

act as if a generalized error correction model (GECM) was a panacea for these problems.

Grant and Lebo (2016) noted the difficulties with this approach and reiterated the need

for effective diagnostics of the properties of time series. Grant and Lebo (2016) and Philips

(2018) serve as useful summaries of the issues that time series analysts face and introduce the

associated bounds testing procedure of Pesaran, Shin, and Smith (2001) (PSS) to political

science. This approach recognizes the uncertainty we often have about the stationarity of

our independent variables. Unfortunately, these early discussions still treat the diagnostics

about the dependent variable as definitive. Philips (2018) has clear proscriptions for how

to approach modeling time series if the dependent variable is stationary or non-stationary.

If one can trust the knife-edged tests of stationarity, then the recommended approach is

relatively straightforward and one can simply follow the recipe that Philips provides.

Webb, Linn, and Lebo (2019) (WLL) reminded practitioners that these unit root tests

are rarely certain. They advocate for a bounds approach that focuses on the long run

multiplier (LRM) that summarizes the relationship between the independent and dependent

variables. They show that the significance of the LRM is a test of the presence of the long

run relationship between the variables, regardless of the stationarity. Importantly, they also

provide the bounds of the t-test of the LRM that applied researchers can use to inform their

conclusions about the significance of the relationship between the variables. It is difficult
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to overstate the importance of this result for applied time series researchers. One can use

the test they provide regardless of the clarity of the stationarity tests for the dependent and

independent variables. All that is needed is to estimate either a GECM or an autoregressive

distributed lag model, calculate the LRM and an estimate of the uncertainty of the LRM,

and calculate the ratio of these two.

This solution is straightforward and elegant. It has a single problem: the estimates of the

uncertainty in the LRM are complicated. The LRM is a ratio of two coefficients and there is

“no simple formula for calculating the standard error of a ratio of coefficients” (Webb, Linn,

and Lebo, 2019: 287). There are two methods for approximating the variance of the LRM—

the delta method and the Bewley transformation—and WLL show that the distribution of

the ratio of the LRM and its standard error is not standard. Their solution is to run a series

of dynamic simulations and develop critical values of the test statistic.

This is a smart approach, but it has one limitation. The bounds method that WLL use

has a range of values where the hypothesis of a long run relationship between X and Y is

rejected, a range where it is not rejected, and a range of values that is indeterminate. Their

advice is to treat results that fall in this indeterminate range as failing to reject the null

hypothesis of no relationship and be transparent about the lack of a definitive conclusion.

This is likely to frustrate many applied researchers. An indeterminate answer to a research

question is generally unsatisfying, even if it is intellectually honest.

This frustration is potentially unnecessary. In this manuscript, we develop a very simple

Bayesian estimator of the LRM that does not have this indeterminacy. We start by using a

bounded prior for the estimated coefficient on the lagged DV that constrains the resulting

dynamic relationship to the plausible range of values from either stationary or integrated

series. We then take advantage of the well-known property of Markov chain Monte Carlo

(MCMC) models where one can estimate and summarize the distribution of functions of

parameters (e.g., ratios of coefficients) directly from the posterior distribution (Gelfand et

al, 1990; Murr, Traunmüller, and Gill, 2023). This framework requires minimal additional
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assumptions over the approach suggested by WLL and is easy to estimate in most software.

One could incorporate more information through the use of informative priors in the esti-

mation, but this is not our intention here. We show that very diffuse priors enable the use

of MCMC methods and the direct estimation of uncertainty of the LRM.

In the next section of this paper, we revisit the results presented by WLL, demonstrating

the importance of the significance tests of the LRM. Next, we provide the very simple MCMC

approach to testing for the presence of an LRR. We use two Monte Carlo experiments to

demonstrate key properties of our approach and compare them with the bounds approach.

We then apply our approach to three empirical applications: two included in the original

WLL work and one recent additional publication. These results show that the Bayesian

approach to estimating the significance of the LRM and the presence of the LRR can lessen

the uncertainty and indeterminacy that researchers face.

Long Run Relationships and Hypothesis Testing

Most applied time series work in political science is intended to test for some relationship

between one or more weakly exogenous independent variables, X, and a dependent variable

y.1 The key to these models is the existence of an LRR between X and y, which implies

that there is a long-run equilibrium between the two. While the presence of an equilibrium

means that the variables tend to not change over time, the practical implication is that it is

the place where the variables tend to return to when they do deviate (Banerjee et al, 1993;

Box-Steffensmeier et al, 2014; Burke, Hunter, and Canepa, 2017; Webb, Linn, and Lebo,

2019, 2020).

The particular nature of the equilibrium depends on the stationarity of the series. For

a stationary series, the mean is the equilibrium. It will eventually revert to it when it

deviates from this mean. The particular type of equilibrium depends on the relationship

1We follow WLL and denote X as a set of multiple regressors and x to indicate a single regressor. We
also note that there are many reasons why a researcher might be interested in multiple dependent variables,
but we are focusing our attention on models with a single dependent variable.
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between X and y. As WLL note, if the equilibrium of Y is a function of X, then there is a

conditional stationary equilibrium and if the equilibrium of y does not depend on X, then

there is a unconditional stationary equilibrium. In contrast, a variable that is non-stationary,

by definition, does not have an equilibrium level that it will tend to return to. The notion

of the “random walk” is that this type of series will move randomly and not tend to move

back to some mean level. This type of series, however, can have an equilibrium based on

a relationship with X. If X also has a unit root, then a cointegrating equilibrium can exist

between X and y, where y will tend to move together over time. In this case, there is a

cointegrating equilibrium.

Traditionally, diagnosing the type of equilibrium is an essential step in testing for the

LRR between X and y. The tests we use for our hypotheses and the critical values of those

tests depend on these diagnostics. Getting the diagnostic wrong likely means that we will

get the substantive conclusions wrong. This is the heart of an exchange on time series

analysis in Political Analysis. Grant and Lebo (2016) demonstrate that if the researcher gets

the diagnostics incorrect, or if they simply run a GECM without paying attention to the

properties of the series, they can make remarkable errors in their hypothesis tests.

But how was an applied researcher supposed to move forward? If we knew the type

of equilibrium possible for our variables, then we would know which model to use. The

flowchart provided by Philips (2018) provides clear guidance on this. If X and y are all

stationary, run an autoregressive distributed lag (ARDL) model. If the bounds test suggests

cointegration, estimate a GECM. If there is not enough evidence to conclude that there is

cointegration, difference the variables and then run an ARDL. This advice is straightforward

and helpful and the bounds approach created by PSS is an excellent step forward.

The problem with this approach is, as WLL note, that it starts with the assumption

that one can definitely diagnose if the dependent variable is stationary. This is often much

harder than it sounds. Unit root tests have low power, particularly when we are working

with the short time series that are common in political science. It gets more complicated
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because we have to make choices about trend, drift, and serial correlation that will change

the test. Given the large number of decisions and tests available, all too often researchers

end up with conflicting evidence from their diagnostics about the nature of the series. As

a result, they have to hope that the results are robust enough that the specification choice

they make that they reach the same conclusion regardless of which approach they choose.

This is the motivation behind the work of WLL. They start with the error correction

model (ECM) setup:

∆yt = α0 + α∗
1(yt−1 − λxt−1) + β∗

0∆xt + εt (1)

where the LRM is represented as λ. This captures the total effect of a one-unit change in x

on y summed over time. The yt−1 - λxt−1 piece of the equation is the long-run equilibrium

relationship. The α∗
1 term is the error correction that accounts for how fast the system

returns to equilibrium after a shock. The actual estimation of this model is usually done via

the GECM setup:

∆yt = α0 + (α1 − 1)yt−1 + β0∆xt + (β0 + β1)xt−1 + εt (2)

or as an ARDL model:

yt = α0 + α1yt−1 + β0xt + β1xt−1 + εt (3)

Of particular interest is the LRM, which is calculated as β0+β1
α1−1

in the GECM, and as β0+β1
1−α1

for

the ARDL. Which model is used is something of a matter of taste as they are mathematically

equivalent to one another (De Boef and Keele, 2008: 189–190).

While recovering a point estimate of the long run relation is relatively straightforward

by simply inputting the estimated coefficient into the appropriate formula, calculating un-

certainty is more complicated. As De Boef and Keele (2008) note, neither the ARDL nor
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the GECM provide a direct estimate of the standard error of the LRM. Since the LRM is

a ratio of coefficients, the calculation of the variance of the ratio of coefficients with known

variances can be used. The formula is:

V ar(
a

b
) = (

1

b2
)V ar(a) + (

a2

b4
)V ar(b)− 2(

a

b3
)Cov(a, b). (4)

There are two approaches used approximate the variance of this ratio and estimate un-

certainty in the long run relationship. The first is to calculate of the LRM from an ECM and

use the Bewley (1979) transformation, which estimates the variance of the LRM directly.The

Bewley transformation is:

yt = α0φ− α1φ∆yt + φ(β0 + β1)xt + φβ1∆xt + φεt (5)

where φ = ( 1
α1−1

) and an instrument for ∆yt is calculated as the predicted values from the

equation ∆yt = γ0 + γ1yt−1 + γ2xt + γ3∆xt + εt. The LRM is the coefficient on xt from

equation 5. The second approach is to use the delta method. The delta method relies on

expanding a random variable—in this case the LRM—via a Taylor series and calculating the

resulting asymptotic variance of this estimate.

WLL demonstrate convincingly that a clear test of the presence on long run relationship

between Xt and Yt is captured by the significance of the LRM. As they note “Thus, a

nondegenerate, or valid, equilibrium relationship between yt and xt requires the LRM to be

nonzero” (pp. 286-287, emphasis in original). Moreover, they demonstrate that this is true

regardless of the stationarity of yt, helping resolve much of the uncertainty in pre-analysis

specification tests of the time series. This is a vitally important result. Additionally, because

the LRM is calculated separately for each of the independent variables, this approach allows

the researcher to know which of the variables have a significant long run relationship with yt,

while the ECM-based tests only indicate that at least one independent variable has a long

run relationship.
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What WLL also make clear, however, is that the interpretation of the specific parameters

in the model depends entirely on the univariate properties of the individual series. Without

knowing, with certainty, if these series are stationary, the traditional tests are indeterminate.

Given the importance of the LRM for specification testing, WLL empirically explore the

appropriate distribution of the test statistics for the LRM based on the Bewley transforma-

tion. While the exact amount of information in the uncertainty estimates and the critical

values for the LRM depend on the sample size and the degree of autoregression in yt and xt,

in general they find that the critical values do no follow a standard distribution. Instead,

they estimate these critical values via a stochastic simulation to determine the bounds of the

test. Their conclusion is that most empirical tests of the LRM are likely over confident in

the hypothesis tests. More importantly, they develop the bounds for the hypothesis tests of

the long run relationship.2 These bounds will guide a researcher to conclude that whether

or not there is a long run relationship.

This is a tremendous step forward for applied time series. What may be unsatisfying for

many researchers, however, is that the bounds have a relatively large range of middle values

that are inconclusive. For many empirical research questions, a researcher may end up with

the unsatisfying result of a test statistic between the bounds and an uncertain conclusion.

So how should an applied researcher interpret indeterminate results, or results that are

near the bounds? WLL de facto treat these cases as failing to reject the null hypothesis,

whether or not a coefficient has cleared the lower bound and approaches the upper bound.

Yet, in practice, a long run relationship may exist even if estimates may fail to significance

owing to a number of reasons, ranging from low power, a lack of precision, or issues related

to equation balance (Keele, Linn, and Webb, 2016: 34-35).

Low power and a lack of precision are related, but distinct, issues. Low power may stem

from a short time series or data that are truncated on either their starting or ending points

owing to how they were collected. A lack of precision may result from measurement error in

2Webb, Linn, and Lebo (2020) provide an expanded set of critical values used to denote upper and lower
bounds, by both the number of observations [25, 50, 75, 150, 500, 1000] and α-level [.01, .05, .10].
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one of the variables or from a time series simply being too short to return to equilibrium.

In either case, when the number of periods in the time series T is small, for example, the

estimate of α1, the coefficient of the LRM, can be imprecise. In settings where dynamic

processes are not in play, these issues simply result in inflated standard errors and not many

other issues. When dynamic processes are relevant, however, the inflation of standard errors

is amplified through the LRM and is more problematic. For instance, if the confidence

interval of α1 includes 1, the variance calculation can produce nonsensical results: if the

value of α1 has probability mass at 1, the LRM is undefined for that point, while if there is

mass where α1 > 1, the denominator will be negative. In each case, the calculation of the

variance breaks down.

Similar issues can complicate checks of equation balance. Equation balance refers to

ensuring that X and y, individually or collectively, have the same order of integration. Pickup

(2022) identifies common sources of confusion around balance when using time series data and

illustrates the effect this has on one’s inferences. Pickup and Kellstedt (2022) provide several

procedures for implementing both theoretical and empirical checks of equation balance. Yet,

even if a X and y meet the theoretical checks, empirical checks for determining the order of

integration and cointegration is difficult and can result in contradictory results, especially

for short time series (Pickup and Kellstedt, 2022: 301).

Given these various issues, which are all too common across the social sciences, applied

researchers face numerous practical difficulties. Even if they meet theoretical standards of

equation balance, their data may simply make it difficult to meet decisively demonstrate that

it is stationary. Thus, treating any result that fails meet the more stringent upper bound

criteria of the bounds test as the threshold for identifying a long run relationship, whether

the lower bound was exceeded or not, may be impractical for advancing our understanding

of relationships for which the data simply do not play nice and clearly meet (or violate) our

tests’ stationarity assumptions.
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A Bayesian Approach

Our approach to this problem is to adopt a Bayesian framework. This allows us to exploit

the limits on the range of plausible values of the coefficient for the lags of the dependent

variable by adding a prior on the coefficient for the lagged DV that will constrain it to be

strictly between -2 and 0 in the GECM and -1 and 1 in the ARDL.3 One could specify a

diffuse prior that places equal probability on all values between these bounds. Alternatively,

a more informed prior, which places more weight to values closer to 0 or either bound, may

be practical in applied settings where one can incorporate existing knowledge.4

One way to think about this prior is that it is simply the formalization of plausible

range of values on the dynamic relationship between the dependent variable and its lags

that researchers are already making when they estimate a model like that in Equation 2

or 3. When a researcher treats a series as stationary, she is assuming that the root of the

characteristic equation of the time series is less than one. When the series is integrated,

the root of the characteristic equation is exactly one. The use of this prior constrains the

estimate of α1 to be no greater than 1, precisely the implication of treating the dependent

variable as stationary or integrated.

An additional benefit of a Bayesian approach is that it works extremely well with samples

with a small T (McNeish, 2016). Such samples are frequently the types of time series that

applied researchers use and that are the cause of so many diagnostic problems.5 There

are many cases where assuming stationarity is appropriate for small samples. The small T

on its own suggests that the stationarity tests will often be weak, placing theoretical and

substantive knowledge of the time series at a premium. Undoubtedly, if a coefficient on the

3The GECM in Eq 2 assumes that −2 < α1 < 0 and the ARDL in Eq 3 assumes that −1 < α1 < 1. See
Keele, Linn, and Webb (2016: Table 1) for a summary of the error correction rates and long run equilibria.

4If one is estimating an ARDL, for example, and has theoretical reasons to expect the coefficient on the
lagged DV to approach 1, then a prior such as B(5, 2), where the pmf is massed near 1, could be used. If,
instead, a researcher believes that the coefficient on the lagged DV is positive, but no other information on
its pmf, a prior such that α1 ∼ B(1, 1) would apply a uniform distribution between 0 and 1.

5An alternative strategy for estimating time series with small T is to use a transformed-likelihood esti-
mator, such as an orthogonal reparameterization estimator (Pickup and Hopkins, 2022).
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lagged dependent variable is not significantly different than 1, that series is unlikely to reject

the null of a unit root in stationarity tests. Researchers, however, often have more knowledge

about the properties of their dependent variable beyond the small set of observations used.

Researchers who are limited by the time-span of their independent variables, for instance,

may have a series that is stationary with larger T than they can use in their analyses. In

other cases, time series of comparable data, whose properties are better known, may exist

and offer a researcher additional contextual information.6

The actual estimation of the model is carried out via MCMCs. This allows us to calculate

the distribution of the posterior for all of the coefficients directly. Rather than using an

asymptotic equivalent to the confidence interval of the LRM or relying on a formula that

is not easily available in most statistical output, we can calculate the LRM for each of

the draws from the posterior in the MCMC and use this distribution to summarize the

credible region of the LRM. This is one of the virtues of inference from the posterior of

an MCMC: a researcher can estimate the distribution of functions (such as ratios) of an

unknown parameter or parameters directly from the posterior distribution of the MCMC

(Gelfand et al, 1990; Murr, Traunmüller, and Gill, 2023).7 As such, we do not need to rely

on the asymptotic properties of the variance estimator of the LRM and should provide more

accurate estimates of the credible region for the LRM than either the Bewley method or the

delta method (especially for small T).

Finally, using a bounded prior keeps estimates of uncertainty of the LRM firmly within

their theoretical bounds. If the confidence interval for the LRM reaches 1 for either the

GECM or ARDL, then denominator of that LRM will include zero. In that case, the estima-

tion of the variance of the LRM will be “mildly explosive”8 (which is bad). The prior thus

keeps estimates of uncertainty within the same theoretical bounds as the point estimate,

6For instance, information garnered from existing data or studies using comparable administrative data
from within a country, region, or similar countries are often available for researchers of American politics
(other US states/counties), comparative politics (provinces, nearby countries), or international relations
(countries with similar economic development).

7This approach can be easily implemented in common statistical programs, such as R or Stata.
8We borrow this phrase from Hill and Peng (2014, 293) and Hill, Li, and Peng (2016, 126).
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providing more substantively plausible and theoretically-informed results.

To demonstrate the usefulness of adopting a Bayesian approach for estimating the LRM,

we conduct two Monte Carlo experiments. The first experiment compares point estimates

and coverage estimates for the LRM—using the bounds approach from a Bewley transfor-

mation of the ECM, and the Bayesian approach—under varying levels of univariate autocor-

relation of x and y and different time series lengths, when there is no long run relationship.

These conditions allow for assessing well each estimation approach separates a spurious long

run bivariate relationship from actual univariate dynamics.

The second experiment illustrates how to apply the Bayesian approach in a more realistic

(but still controlled) setting where the researcher is interested on testing and reporting the

instantaneous and long-run effects of an independent variable. In this experiment, we report

point and uncertainty estimates for x, a lagged y, and the LRM, where there is a moderate

long run relationship between x and y as well as moderate autocorrelation between x and

its lag. This specification allows us to evaluate how well each approach captures a true long

run relationship under conditions that a research would experience in practice.

Following these experiments, we compare the results and provide a general discussion for

applied researchers, focusing on trade-offs and gains from each approach.

Monte Carlo Experiment #1

For the first Monte Carlo experiment, we generate our data replicating the dynamic simu-

lation process used by WLL to identify bounds for the LRM. We begin by generating two

independent autoregressive processes, such that yt = ρyyt−1 + εy and xt = ρxxt−1 + εx, with

the errors drawn from separate standard normal distributions and T = 75. While the error

terms are each stationary, the values of ρy and ρx are set to be either 0 or 1—reflecting I(0)

and I(1) for each variable. This gives four scenarios: one where ρy = 0 and ρx = 0, a second

with ρy = 0 and ρx = 1, another where ρy = 1 and ρx = 0, and finally a case with ρy = 1

and ρx = 1. In the true data generating process there is no long run relationship between

11



yt and xt; therefore, any (mis)identified relationship is strictly due to the dynamics induced

through the univariate autoregressive processes.

Using these data, we continue to follow WLL by estimating the LRM and its uncertainty

using the Bewley tranformation from Eq 5. We then also estimate a Bayesian ECM. As

described above, one of the advantages of the Bayesian ECM is that uncertainty for each

parameter, including those of functions, can be directly estimates from the posterior distri-

bution of the MCMCs. That is, rather than an approximation for the uncertainly for the

LRM that relies on asymptotic properties, as is the case with the Bewley transformation,

the direct estimates from the Bayesian estimator should be more accurate, particularly when

T is relatively short and asymptotic properties are least likely to hold.

The Bayesian ECM is specified as in Eq 2, with diffuse priors of N (0, 20) for the constant

and the coefficients associated with ∆xt and xt−1, an uninformed prior of U(0, 2) on the

coefficient for lagged y, and the prior for the variance distributed G(1, 10). Recall that

the prior on the coefficient on yt−1 for an ECM formalizes the specification of the dynamic

relationship between the dependent variable and its lagged values and prevents it from taking

explosive values that do not return to the LRR equilibrium. Each Bayesian ECM is estimated

using 5,000 MCMCs after a 2,500 burnin and thinning of 10.

For each combination of ρy, ρx from the data generating process, we estimate the LRM

from the Bayesian and Bewley specification for two lengths of T, such that T ∈ {25, 75}.9

The varying lengths for T allow us to look at both how well the estimates fair for short and

moderately short time series that are common to social science data.

Table 1 reports summaries for estimates of the LRM from 20,000 simulations under each

of the 8 scenarios (four ρy, ρx possibilities times two lengths of T).10 For both the Bayesian

and Bewley estimates of the LRM, we report a point estimate (posterior median for the

Bayesian estimator, average point estimate for the Bewley estimator) and its coverage rate.

9Both lengths of T are taken from the same original time series: when T = 25, the first 25 observations
are used; when T = 75, all of the observations are used.

10To clarify, within each individual simulation of the first Monte Carlo experiment, the Bayesian ECM
estimates are summaries based on its own 5,000 MCMCs following a 2,500 burnin. Wheels within wheels.
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The point estimate allows for assessing bias in the estimate of the LRM, while the coverage

rates offer insights into how well the different estimation strategies perform in returning

accurate estimates under varying conditions that are common in applied work (Hopkins et

al, 2023). Lower coverage rates would suggest that, even if an estimator is unbiased on

average, its results are less unreliable in any particular application. Coverage rates for the

Bayesian ECM report how frequently the true value is within the estimate 95 percent credible

intervals. For the Bewley model, we report the coverage rate using the bounds approach

suggested by WLL; that is, we construct 95 percent confidence intervals for both the lower

and upper bound at each length of T, using the appropriate t-statistics identified by Webb,

Linn, and Lebo (2020: Table 2).11 We also report the percent of indeterminate cases arising

from incongruent outcomes between using lower and upper bound.

There are several notable results from the Monte Carlo experiment. In terms of bias,

estimates of the LRM are similar for both the Bayesian and Bewley approaches. When

ρy = 0, the Bayesian and Bewley models each correctly recover estimates showing no long

run relationship. When ρy = 1, both show limited bias, though a quick glance of their

coverage rates indicates that, even in these cases, the overwhelming majority of the time

their credible and confidence intervals correctly contain zero. That both estimators perform

better when ρy = 0 is unsurprising, and that each approach correctly predicts the (lack of a)

long run relationship provides initial confidence in the average accuracy of either approach.

Next, we focus on coverage rates. First, the Bayesian ECM recovers the true value in the

overwhelming majority of cases, with rates of approximately 95% when ρy = 0 and a slightly

lower 88% when ρy = 1. When using the bounds approach with the the Bewley estimates,

the upper bound recovers the true value in nearly all simulations, with only the scenario

of ρy = 1, ρx = 1 being at 95% (which coincides, of course, the aim of the WLL’s bounds

approach). The lower bound, however, performs much more poorly, with a high coverage

rate of 78% and a low of 58%. The indeterminate range, where applied researchers cannot

11In our experiment, with one X variable and T = 25, the t-statistic for the lower bound is 1.25 and for
the upper bound is 3.79. When T = 75, the corresponding t-statistics are 1.06 and 3.68, respectively.
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Table 1: LRM Estimates with Varying Autocorrelations and Sample Size.

T = 25
ρy = 0, ρx = 0 ρy = 0, ρx = 1 ρy = 1, ρx = 0 ρy = 1, ρx = 1

Bayesian ECM
Median -0.001 -0.001 0.002 -0.001
Coverage 0.961 0.958 0.888 0.902

Bewley Transformation
Mean 0.001 -0.001 -0.012 0.091
Lower Bound Coverage 0.763 0.749 0.780 0.648
Upper Bound Coverage 0.999 0.997 0.998 0.950
Indeterminate Range 0.235 0.248 0.218 0.303

T = 75
ρy = 0, ρx = 0 ρy = 0, ρx = 1 ρy = 1, ρx = 0 ρy = 1, ρx = 1

Bayesian ECM
Median 0.000 -0.000 -0.000 -0.003
Coverage 0.948 0.948 0.878 0.882

Bewley Transformation
Mean -0.000 -0.000 -0.002 -0.248
Lower Bound Coverage 0.702 0.697 0.763 0.583
Upper Bound Coverage 0.999 0.999 0.999 0.951
Indeterminate Range 0.297 0.302 0.237 0.369

Note: Bayesian estimates are median and 95% credible intervals from the posterior distribution. The LRM
(and uncertainty) for the traditional ECM is estimated using the Bewley transformation. The coverage
range for the Bewley transformed LRM is calculated using a t-statistic of 1.25 for the lower bound and 3.79
for the upper bound when T = 25, a t-statistic of 1.06 for the lower bound and 3.73 for the upper bound
when T = 75 (Webb, Linn, and Lebo, 2019, 2020).

confidently reject the null hypothesis nor fail to reject it, is never less than 21% and reaches

nearly 37% in one scenario.

Second, when looking within each scenario of ρy, ρx across each T, the Bayesian ECM re-

turns similar coverage rates. This reflects the fact, of course, that Bayesian statistics does not

rely on large sample sizes (i.e. the Central Limit Theorem) for calculating results (see, e.g.,

Miočević, Levy, and van de Schoot, 2020: 1). In contrast, the Bewley coverage for the upper

bound remain consistent, whereas that of the lower bound actually decrease as T increases.

This stems from a smaller t-statistic being applied, when using the bounds approach, as

the number of observations increase. As a result, the proportion of the indeterminate range

between the lower and upper bounds increases with the size of the sample.

Third, the percent of cases in the indeterminate range for the bounds approach based

on the Bewley estimates are greatest when ρx = 1. This result is substantively meaningful,
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as many covariates used as control (or even independent variables) included in panel data

either do not change, or do not change very much, over time. For instance, it is well known

in international relations that a country’s regime type is usually relatively stable for long

periods of time. Even in cases where these covariates do change, such as the GDP of a state,

province, or country, they are often primarily a function of the own prior value. Each of

these are cases where ρx would approach 1. This is also something, of course, that can be

evaluated and known prior to estimating a dynamic model.

Fourth, the Bayesian ECM provides the greatest coverage when ρy = 0, with a decrease

of 5 to 7 percentage points when ρy = 1. This decrease in accuracy holds regardless of

the length of the time series. This result may, however, reflect our use of a diffuse prior,

which gives equal weight to all theoretically possible values of the lagged y, thus pulling it

towards the lower and upper bounds. Conversely, the Bewley coverage rates are highest when

ρy = 1, ρx = 0, even outperforming itself compared to when y was not dynamic. However,

the Bewley approach performs its worst when ρy = 1, ρx = 1, returning coverage rates below

65% for the lower bound.

These results highlight key small sample properties of LRM estimates from a Bayesian

ECM and applying the bounds approach with Bewley estimates under varying univariate

dynamics when the true LRR is zero. While both are generally unbiased, coverage rates

are impacted by the univariate dynamics. When y behaves nicely, then the benefits of the

Bayesian approach are most evident: high coverage rates without the inconvenience of wide

indeterminate ranges. When y is less well mannered, the coverage rates for the Bayesian

approach drop slightly12 while the indeterminate range for the bounds approach remain large.

Monte Carlo Experiment #2

For the second Monte Carlo experiment, we generate a simple dynamic model with a mod-

erate long run relationship between X and y, and mimic common features of real world

12These coverage rates, of course, would improve if a more informed prior were used.
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data by inducing a mild autoregressive process between X and its lag. More specifically,

we generate the endogenous variable so that Yt = α0 + α1Yt−1 + β0Xt + β1Xt−1 + εt where

α0 = 0, α1 = 0.5, β0 = 0.5, and β1 = 0.25. We generate the exogenous variable so that

Xt = γXt−1 + ηt where γ = 0.5. Both ηt and εt are drawn from a standard normal where

cov(ηt, εt = 0). The LRM, given this specification, is 0.5+0.25
1−0.5

= 1.5. Since we are interested

in the small sample properties of each approach, we set T = 25. This experiment illustrates

how well each approach is able to help researchers make correct inferences when there is a

LRR between their variables of interest.

We estimate both a Bayesian ECM and a traditional ECM to recover parameter estimates,

specified as in Eq 2. The LRM is estimated directly from the posterior distribution in the

case of the Bayesian ECM, and via the Bewley transformation for the traditional ECM.

We give the Bayesian ECM diffuse priors of N (0, 20) for the constant and the coefficients

associated with xt−1 and ∆x, a semi-informed prior of U(−1, 0) on the coefficient for yt−1

such that the LRR cannot be negative (e.g., assumed to either be positive or have no effect),

and a diffuse prior of G(1, 10) for the variance. Each individual Bayesian ECM is estimated

from 5,000 MCMCs after a 2,500 burnin with a thinning of 10. Finally, the Bewley estimate

of the LRM for the tradition ECM is specified as in Eq 5.

Table 2 reports summaries for each estimation approach based on 20,000 simulations. The

first column reports the true value of the ECM estimates based on the data generating process

described above;13 the second column reports the median value, and the accompanying 95

percent credible interval, taken from the posterior distribution for the Bayesian ECM; and the

last column reports the mean coefficient and standard error for the traditional ECM. Below

the parameter for the instantaneous effects is the estimated LRM and its uncertainty; for the

traditional ECM, these are obtained via the Bewley transformation. Finally, the bottom of

the table reports the coverage rates from each estimator, with the lower and upper bounds

based on the t-statistics identified by WLL used for the Bewley estimates, along with the

13Recall that the ADL and ECM specifications are mathematical equivalents of one another (De Boef and
Keele, 2008; Keele, Linn, and Webb, 2016).
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Table 2: Error Correction Model Parameter Estimates with a Moderate LRR and Univariate
Autocorrelations, and T = 25.

ECM w/ Bewley
True Value Bayesian ECM Trans. & Bounds

Yt−1 -0.5 -0.577 -0.594
[-0.88, -0.25] (0.172)

Xt−1 0.75 0.797 0.815
[0.220, 1.368] (0.273)

∆X 0.5 0.494 0.495
[0.011, 0.976] (0.224)

Constant 0 -0.003 -0.003
[-0.512, 0.506] (0.239)

LRM 1.5 1.452 1.454
[0.173, 3.469] (0.543)

Bayesian Coverage Rate 0.683
Lower Bound Coverage 0.940
Upper Bound Coverage 0.292
Percent in indeterminate Range 0.648

Note: Bayesian estimates are median and 95% credible intervals from the posterior distribution. The LRM
(and uncertainty) for the traditional ECM is estimated using the Bewley transformation. The coverage
range for the Bewley transformed LRM is calculated using a t-statistic of 1.25 for the lower bound and 3.79
for the upper bound (Webb, Linn, and Lebo, 2019, 2020).

range of indeterminate values where the lower and upper bounds give conflicting inferences.

Starting with the estimates associated with the specified variables, both the Bayesian

and traditional ECM return similar values in terms of bias and produce similar inferences in

determining which factors are determinants of Y, with all measures of uncertainty including

the true value, on average. The same holds for the estimate of the LRM, with each finding

a positive, non-zero effect, on average.

Turning to the coverage rates, however, there is greater divergence. While the entirety

of the Bayesian estimator’s 95 percent credible interval range is greater than zero in 68.3%

of the simulations, the 95 percent confidence intervals estimated using the bounds approach

offers for a more muddled conclusion.14 Though the lower bound criteria returns estimates

that are greater than zero for the entirety of the 95 percent confidence interval in 94% of the

14We report the coverage rates for the entirety of the credible range in order to make a more straightforward
comparison between estimators in the current Monte Carlo experiment. In practice, however, one could
calculate and report the percent of individual MCMC draws above/below zero to provide more precise
confidence in the probability of a LRR between X and y. We demonstrate this in the next section.
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simulations, the more challenging upper bound criteria does so in only 29.2% of the time. The

result is that, in almost two-thirds of the simulations (64.8%), the bounds approach offers

conflicting guidance on whether a LRR exists between X and y; this is despite the fact that

a true LRR between X and y does exist by the construction of the experiment. Moreover,

this type of scenario is where the bounds approach is most likely to be implemented by an

applied researcher, since the dynamics of X and y are neither I(0) or I(1), but in-between.

There are several takeaways from the two experiments. One is that the bounds approach—

especially applying the stricter criteria of using only the upper bound—reduces the risk of a

type 1 error. Conversely, this risk is slightly higher, under some conditions, when using the

Bayesian approach. The cost of reducing this risk, however, is that the more stringent upper

bound threshold dramatically increases the risk of a type 2 error. The Bayesian approach, on

the other, is much better able to correctly recover moderate LRR, even when the sample size

is small. Another key finding is that, for the bounds approach, the size of the indeterminate

range can be quite large, especially when sample sizes are small. This holds regardless of

whether an actual LRR between X and y exists. This characteristic is likely to be especially

unsatisfying for applied researchers.

So what is an applied researcher to do? Given the insights from our Monte Carlo experi-

ments, we think that the benefits of adopting a Bayesian approach is fairly strong, especially

when the sample size is relatively small. At the small cost of a very slightly lower coverage

rate when the LRR is null and the autocorrelation in y is very high—the latter a condi-

tion that would be evident from pre-testing and manageable with even a slighly-informed

prior—one gains far more precision in making theoretical inferences.

Applications

In this section, we replicate three existing time series papers using our Bayesian approach.

The first two are the same as in the original WLL paper, replicating the work of Ferguson,
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Kellstedt, and Linn (2013) on the effect of policy on public mood and Lebo and O’Green

(2011) on presidential success in Congress. The third application is a recent paper on aggre-

gate levels of interest in politics in America by Peterson et al (2022). These three applications

demonstrate that the Bayesian approach can resolve some of the indeterminate results in

existing work.

The first application is a test of how policy mood responds to public policy. Mood,

in this context, is the electorate’s preference for the size of government. When the public

wants the federal government to expand, mood will be higher. When the electorate is more

conservative, favoring a smaller government, mood will be lower (Stimson, 2018). The actual

measure of policy mood is based on Stimson’s (2018) dyad ratio algorithm that combines

thousands of individual survey questions to develop a single time series of the preferences of

the American electorate. It is one of the foundational concepts in the study of macro politics

in America. Durr (1993) was the first to argue that mood should respond to changes in

the economy and the actual size of government. As the economy expands, Durr contended,

the public would be likely to express support for a more expansive government because the

stronger economy would make it easier to pay for the policies. When the economy contracts

and finances become tighter, the public is likely to prefer lower taxes, leading mood to

decrease. The second main antecedent of policy mood, public policy itself, has been a more

robust predictor of changes in mood. This thermostatic model of public opinion holds that

when policy moves in one direction, the public responds by moving in the opposite direction

(Wlezien, 1995).

WLL chose the Ferguson, Kellstedt, and Linn (2013) paper as an application because the

time series properties of policy mood are notoriously difficult to diagnose. As WLL note,

several tests of the stationarity of policy mood give conflicting and ultimately confusing

results. Thus, they continue, scholars have not reached a consensus on the stationary of

mood. Across the literature, it seems like applied researchers have used almost every possible

specification of mood’s dynamic properties and the tests are so inconsistent that no one

19



really knows the correct specification. This is precisely the type of inconclusive results that

bedevil applied time series researchers. They are usually forced to make a decision about

the stationarity of policy mood and treat it as true. The approach advocated by WLL

allows researchers to directly incorporate the uncertainty of the specification tests into the

hypothesis testing.

WLL use the GECM setup for their model of policy mood. Their specification is:

∆Yt = α0 + (α1 − 1)Yt−1 + β0∆X1t + (β0 + β1)X1t−1 + β2∆X2t + (β2 + β3)X2t−1 +

β4∆X3t + (β4 + β5)X3t−1 + β6vt + εt (6)

where Yt is policy mood at time t, x1 is inflation, x2 is unemployment, x3 is the liberalness

of existing policy, and vt is an intervention for the Vietnam war. The conclusions that WLL

reach are that the evidence is insufficient to support either the theory that policy mood

responds to the economy or the thermostatic model of opinion. The effect of unemployment

is unambiguously insignificant. The other two LRMs, however, are less clear. The t-statistics

are between the upper and lower bounds. While these are technically indeterminate results,

WLL suggest that the researcher should fail to reject the null hypothesis with this pattern

of results unless the researcher is confident that mood is a stationary series. Again, the

stationarity tests are so inconsistent that this does not seem like a warranted conclusion.

Using our Bayesian approach to the model, we reach different substantive conclusions.

We report the result in Table 3. The coefficients reported are medians from the posterior

of the MCMC. We had four chains, each with a 25000 iteration burnin, followed by 5,000

iterations and a thinning of 5. The results, then, are based on a total of 4,000 draws from the

posterior. The numbers in the parenthesis underneath are the 95 percent credible interval

for the coefficients and the LRM from the posterior distribution. The point estimates of the

coefficients are almost identical to the results in WLL using OLS. The main difference in the

substantive conclusion is the significance of the LRM for the policy measure. In WLL, this
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Table 3: A Model of Domestic Policy Mood: Second Quarter 1968 through Fourth Quarter
2010.

Variable Xt−1 ∆Xt LRM
Mood -0.23

(-0.33, -0.13)
Inflation -0.12 -0.11 -0.51

(-0.25, 0.01) (-0.51, 0.29) (-1.07, 0.06)
Unemployment -0.08 0.93 -0.36

(-0.28, 0.10) (-0.02, 1.89) (-1.49, 0.57)
Policy -0.10 -0.17 -0.45

(-0.20, -0.01) (-0.58, 0.22) (-0.95, -0.06)
Vietnam 1.82

(0.53, 3.11)
Constant 19.57

(11.51, 27.83)
T 169

fell between the bounds, leading to an indeterminate conclusion. In our Bayesian approach,

the 95 percent credible interval excludes zero, suggesting that there is a significant long-run

relationship between public policy and public mood. In fact, in 98.7 percent of the the 4000

draws from the posterior the estimated LRM for the policy measure is negative.

For our second application, we replicate the work of Lebo and O’Green (2011) that

explores the predictors of presidential success in Congress. The dependent variable in this

model is the percentage of times the president wins a vote in the U.S. House by year from 1953

to 2006. The basic question in the research is if presidential approval gives the president the

ability to persuade members of Congress to vote along with the president’s policy preferences.

While there is a long history of work predicting that approval gave the president more policy

leverage, Edwards (2009) argues that the institutional features of the time determine how

successful the president will be. Instead of being able to persuade members of Congress to

vote counter to their predispositions, presidential success is predetermined by the preferences

of members of Congress themselves. When presidents appear successful, it is really due to

the partisan balance of Congress.
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Table 4: A Model of Presidential Success, 1953–2006.

Variable Xt−1 ∆Xt LRM
Presidential success -0.58

(-0.83, -0.33)
Conditional party government 7.50 11.14 12.96

(1.81, 13.36) (5.54, 16.74) (3.89, 22.51)
President’s party House share 1.35 1.96 2.32

(0.56, 2.14) (1.41, 2.49) (1.32, 3.29)
Presidential approval 0.09 0.30 0.15

(-0.27, 0.43) (-0.07, 0.67) (-0.59, 0.73)
Constant -34.64

(-73.05, 3.34)
T 52

The empirical application has three independent variables predicting presidential success.

The main variable, and the key test of the presidential persuasion argument, is presidential

approval. The other two variables capture the institutional balance of the U.S. House. The

first is the percentage of House seats held by the president’s party. The second is the

conditional party government index (CPG) (Aldrich, Berger, and Rohde, 2002). WLL note

that in these series, the unit root tests are ambiguous, making this work an apt choice for

their bounds approach. The specification is also a straightforward ECM model.

In WLL’s paper, they find a robust relationship between the share of the House held by

the president’s party and no evidence of a link between presidential approval and presidential

success. The t-statistic capturing the relationship between the conditional party government

measure and success, however, fell between the bounds. Again, WLL conclude that there is

not enough evidence to support the hypothesis that conditional party government predicts

presidential success.

We estimate our model with the same MCMC specifications as the previous application.

Our results are similar to those of WLL for two of these three variables. The point estimates

of the coefficients and the LRMs reported in Table 4 are almost identical to the ones reported

in WLL. The credible region for the LRMs also leads us to conclude that there is a relation-
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ship between the share of seats held by the president’s party and the president’s success. We

also find no evidence of a relationship between approval and presidential success. Our results

differ on the effect of the CPG measure. The 95 percent credible region for the posterior

estimate of the LRM excludes zero, indicating that there is a robust long-run relationship

between the variables. With the MCMC approach, we have 4,000 draws from the posterior

and can estimate the LRM for each of these iterations. For this variable, 99.3 percent of the

draws from the posterior distribution are greater than zero.

Our final application explores the relationship between trust in government and interest

in politics. Peterson et al (2022) argue that trust and interest trade-off in the electorate.

When the electorate trusts the government more, the incentive to pay attention to politics

lessens. Voters make a choice about whether or not to follow politics. For some, this is simply

a habit or a hobby. For many people, however, it is something of a chore. They expect that

when the electorate trusts government to look out for the public interest, the incentive to

actively monitor the government lessens. Some of the electorate chooses to spend that time

on things they find more enjoyable than politics. In contrast, went the electorate believes

that the government is untrustworthy, the need for monitoring increases. The electorate will

need to hold government officials more accountable. Peterson et al (2022) argue that this

creates a tradeoff of normative evaluations of government. In general, higher levels of trust

and higher levels of interest are believed to be markers of a stronger democracy. With this

tradeoff, however, it is difficult to have high levels of both.

They rely on existing macro-level measures of trust in government and use the tech-

nique developed by Stimson (2018) to construct a new aggregate measure of macrointerest.

Peterson et al (2022) report that both of these macro series are integrated and that the

Engle-Granger two-step method supports the hypothesis that they are cointegrated. Based

on these results, they estimate the relationship as an ECM and find support for their theory.

They also develop two other alternative hypotheses about the effect of presidential approval

and consumer sentiment on macrointerest and find no evidence for either relationship. They
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do find that presidential campaigns heighten levels of political interest. Finally, they argue

that scandals and other major events may cause Americans to become more interested in

politics and include a long list of major events during their timeframe. September 11 is the

only of these events to have a significant effect on macrointerest.

The conclusion about the effect of trust on interest, however, is dependent on these

specification tests and ignores the uncertainty in the stationarity and cointegration tests.

If they are correct about the specification, then the evidence supports their theory. In the

article, they report the confidence interval for their estimate of the LRM based on the Delta

method, but not the t-statistic. Replicating their published work, we find that the t-statistic

for the LRM is -2.71, which lies between the bounds provided by WLL and the result should

be seen as inconclusive. Based on the bounds method, then, the main conclusion of Peterson

et al (2022) is not clearly determined. They do find a significant short-term effect of changes

in trust on changes in interest, but the LRM is not significant if one is not certain about the

assumption that both trust and interest have unit roots.

To replicate the Peterson et al (2022) study using the Bayesian approach, we again use

the same specification of the MCMC model as before. The results, reported in Table 5, have

the same pattern of significant results as the original article. There is a negative relationship

between trust and interest in both the long run relationship and the short term effect of

changes in trust in government. Central for our application, the 95 percent credible interval

of the LRM excludes zero, suggesting that there is a long-run relationship between the two.

In fact, the estimate of the LRM is negative in 98.5 percent of the draws from the posterior.

As a result, our analysis supports the main conclusion of the original article. We also replicate

the results for the effect of September 11 and for presidential campaigns on macrointerest.

Lastly, and consistent with Peterson et al (2022), we find no evidence that either ICS or

presidential approval are linked to macrointerest.
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Table 5: A Model of Macrointerest, 1973–2014.

Variable Xt−1 ∆Xt LRM
Interest -0.14

(-0.22, -0.05)
Trust -0.09 -0.21 -0.62

(-0.16, -0.01) (-0.37, -0.04) (-1.29, -0.13)
Consumer sentiment 0.00 0.00 0.01

(-0.02, 0.02) (-0.04, 0.04) (-0.17, 0.16)
Presidential approval 0.01 0.00 0.04

(-0.02, 0.03) (-0.03, 0.03) (-0.14, 0.28)
Presidential campaign 0.40

(0.23, 0.57)
Watergate 0.55

(-0.66, 1.73)
ABSCAM 1.52

(-0.96, 4.04)
Jim Wright -0.54

(-3.06, 2.05)
Keating five -0.23

(-2.72, 2.42)
Clinton Impeachment -0.29

(-2.13, 1.52)
September 11 1.88

(0.01, 3.72)
Hurricane Katrina -0.11

(-2.50, 2.37)
Invasion of Panama -0.01

(-2.54, 2.45)
Second Iraq War -0.06

(-2.49, 2.38)
Persian Gulf War -0.96

(-3.48, 1.5)
Constant 12.65

(4.77, 20.53)
T 167

Conclusion

Applied time series work can be frustrating for researchers. The need to get the dynamic

properties of the series correct can bedevil a project. The weak tests for stationarity and
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the often inconclusive results from differing tests make time series analysis more complicated

than might be appreciated. We have the hunch that there are likely numerous studies that

have been started and stopped, and eventually shoved in a digital file drawer, because the

researcher cannot be confident about the stationarity of the series they are working with.

That is, time series researchers may not only be stymied from the same null results problem

that we all face, but the uncertainty about which specification is the correct one can lead

some to simply throw up their hands and give up on a project.

To this end, WLL provide a tremendous service by incorporating the uncertainty of the

specification tests into their models and calculating a very clear set of bounds for when to

conclude that there is an LRR between two variables. For some projects, this will be enough.

If the results are clearly outside the bounds, the researchers know exactly what to do. But

for many applied time series studies, the bounds approach will lead to inconclusive results.

The necessity of the indeterminate zone of results, while intellectually honest, is likely to

be unsatisfying for some. In this paper, we show that a Bayesian approach that directly

estimates the LRM from the posterior of the model is one way to address the indeterminate

zone of results. Using uninformative priors on most parameters, but directly incorporating

the limits on the dynamic parameters in the model, we get better coverage in our Monte

Carlos. This effect seems to be particularly pronounced for the small T types of time series

that are common with social science data.
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